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ABSTRACT
The explosively generated micro-videos on content sharing plat-
forms call for recommender systems to permit personalized micro-
video discovery with ease. Recent advances in micro-video rec-
ommendation have achieved remarkable performance in mining
users’ current preference based on historical behaviors. However,
most of them neglect the dynamic and time-evolving nature of
users’ preference, and the prediction on future micro-videos with
historically mined preference may deteriorate the effectiveness of
recommender systems. In this paper, we propose to explicitly model
dynamic multi-trends of users’ current preference and make pre-
dictions based on both the history and future potential trends. We
devise the DMR framework, which comprises: 1) the implicit user
network module which identifies sequence fragments from other
users with similar interests and extracts the sequence fragments
that are chronologically behind the identified fragments; 2) the
multi-trend routing module which assigns each extracted sequence
fragment into a trend group and update the corresponding trend
vector; 3) the history-future trend prediction module jointly uses
the history preference vectors and future trend vectors to yield
the final click-through-rate. We validate the effectiveness of the
proposed framework over multiple state-of-the-art micro-video
recommenders on two publicly available real-world datasets. Rel-
atively extensive analysis further demonstrate the superiority of
modeling dynamic multi-trend for micro-video recommendation.
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1 INTRODUCTION
In recent years, the amount of searchable micro-videos has in-
creased dramatically and exacerbated the need for recommender
systems that can effectively mine users’ preference and identify
potentially interested micro-videos in a personalized manner. Due
to the powerful representation learning capacity, the rapid develop-
ment of deep learning techniques has nourished the research field of
recommendation [17, 24, 33, 41, 42, 57, 58, 62, 65, 67, 68, 70, 73, 74].
Such a development also gives rise to diverse models for video
recommendation, which can be roughly categorized to collabora-
tive filtering [2, 29], content-based filtering [11, 16, 44, 48, 77], and
hybrid ones [5, 6, 72].

Comparedwith professional video recommendation,micro-video
recommendation posesmany unique challenges. For example, micro-
videos typically lack of meta-data (e.g., genre, director, actor/actress,
which are commonly available in professional videos), leading to
semantic gap in representation [9]. Moreover, users might be inter-
ested in multiple topics of videos simultaneously, i.e., diverse inter-
ests, and yield interests to different extends (e.g., like, follow, click),
i.e., multi-level interests [39]. Recent years have witnessed much
progress to confront the above challenges in this vein. THACIL [9]
employs temporal block splitting and hierarchical multi-head atten-
tion to model diverse interests across blocks. ALPINE [39] models
users’ dynamic interests by constructing temporal behavior graph
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and devising the temporal graph-based LSTM. MTIN [30] consid-
ers personalized importance decay over time and diverse interests
using item-level temporal mask and group routing mechanism, indi-
vidually. In spite of the great advances of these works, we argue that
solely modeling the historical behaviors deteriorates the capacity of
user modeling capturing diverse and dynamic users’ interests. For
example, MTIN [30] assigns historically interacted items to one of
six interest groups and accordingly updates the six interest vectors.
Since users’ interests are by nature dynamic, the interests learned
from the logged data might be out-of-date or at least limited to
the history, falling short to recommend fresh items and hurting
the recommendation diversity. Therefore, capturing dynamic inter-
est trends based on (but not limited to) historical items can be an
indispensable function for high-quality recommender systems.

Towards this end, we devise the multi-trends framework for
dynamic micro-video recommendation, abbreviated as DMR. We
start from the perspective that trends refer to the possible future
directions of the current interest implied by the logged interactions.
Since we have no access to items interacted in the future, DMR
encapsulates an implicit user network construction module that
first identifies sequence fragments that yield similar interests as
the current sequence from similar users. Then, we constructs possi-
ble trending sequences by extracting the sequence fragments that
are chronologically behind the identified ones. We note that some
trending sequences may share similar interests and representing
each sequence as an individual interest may introduce unnecessary
noises and computation costs. Towards this end, inspired by [30, 38],
we devise a multi-trend routing module that transforms multiple
trending sequences to fewer number of multiple trend interest vec-
tors. However, extracting trending sequences and mapping them
to trend vectors for each testing inference might hurt the serv-
ing efficiency of industrial deployment. Thus, multi-trend routing
module constructs a fixed-length trend memory for each user and
read-writes the memory during training. For memory read-writing,
we propose to assign trending sequences to memory slots in a soft
way and power the process with attention mechanisms. During in-
ference, we directly take the off-the-shelf history/trending vectors
without extracting or transforming trending sequences, and thus
addressing the efficiency issue. Predictions are performed with the
history-trend joint prediction module.

To this end, DMR framework makes predictions based on both
the history interests implied by the historical behaviors as well
as multi-trends implied in similar users, which helps to capture
even more diverse and dynamic interests compared with exist-
ing micro-video recommenders. We validate the effectiveness of
DMR on micro-video recommendation benchmarks. The substan-
tial improvement over state-of-the-art comparison methods and
in-depth model analysis demonstrate the superiority of modeling
multi-trend for micro-video recommendation. Overall, this paper
has the following contributions:

• We propose to capture even more diverse and dynamic inter-
ests beyond the historical behaviors bymodeling the possible
interest trends for micro-video recommendation.
• We devise the novel DMR framework that encapsulates the
implicit user network construction module, which extracts

trending sequences from similar users, the multi-trend rout-
ing module, which performs dynamic trending memory read-
write and improves the inference efficiency at the inference
stage, and the history-trend joint prediction module.
• We conduct extensive experiments on micro-video recom-
mendation benchmarks, of which the results show DMR
framework achieves high-quality recommendation with im-
provement on both accuracy and diversity.

2 RELATEDWORK
2.1 Video Recommendation
The methods for recommendation can be generally classified into
two categories. Early algebraic approaches adopted collaborative
filtering [15, 27, 35, 54] or model-based methods [13, 34, 52, 63] to
estimate user-item correlations and make predictions about users’
future interests. Collaborative filtering (CF) assumes that users
sharing the same opinion on one issue tend to have more similar
opinions on other issues [37], and thus it makes predictions specific
to each user through information gleaned from other users [60]. Due
to the extreme high computational complexity and data sparsity in
traditional CF [13, 47], model-based methods alleviate this overhead
by mapping user-item interactions into matrix entries, then apply
factorization to the characteristic matrix to build nonlinear models
that estimate correlations (i.e. preferences) between every pair of
user and item and employHiddenMarkovmodels (HMM) to capture
temporal trends of preferences [52].

Recently, as the major advances in deep learning techniques, a
wealth of research has sprung up on incorporating them into recom-
mender systems. Most of work reformulated traditional estimation
problem as learning task based on deep neural networks [18, 25, 56].
In the field of video recommendation, representative work focuses
on content-based learning [10, 12, 64, 66], in which features of
videos are extracted into embedding vectors and then matched
with user representations that indicate individual preference. To
name a few, Chen et al. [7] tackled the item- and component-level
implicit feedback issue in multimedia recommendation by learning
independent video and users characteristics in a unified hierarchical
attention network and then reckoning pair-wise scores as a measure
of user preference. Although these works improve the accuracy of
user modeling, they lack a clear partition of history and future for
the given dataset and hence may encounter prediction bias due to
mixing the two parts together. Our work adopts a multi-step time
partition and similarity matching approach to alleviate this issue.

2.2 User Behavior Modeling
Modeling latent user interest from historical behaviors is commonly
used in recommender systems. In the past two decades, a variety of
approaches have been proposed, ranging from Markov chains [22,
23, 46, 52, 55] and traditional collaborative filtering [15, 36, 53] to
deep representation learning [50, 76]. The approaches based on
Markov decision processes implicitly track user state dynamics
to predict future behaviors. For example, Rendle et al. [52] cap-
tured long-term user interest via personalized transition graphs
over underlying Markov chains. He and McAuley [23] integrated
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similarity-based methods with Markov chains smoothly in person-
alized sequential recommender systems. Besides, temporal collabo-
rative filtering is proposed to deal with the drifting user preferences.
Koren [36] offered a paradigm that tracks time changing behaviors
throughout the life span of the data.

With the development of deep learning, more and more re-
searchers adopted deep neural networks (DNN) to model the user
dynamics in recommender systems. Particularly, Hidasi et al. [28]
applied recurrent neural networks (RNN) to model the whole ses-
sion and introduced a new ranking loss function tomake recommen-
dations more accurate. Tang and Wang [59] utilized convolutional
filters to embed a sequence of recent items into an "image" in the
time and latent spaces as well as learn sequential patterns as local
features of the image. Wu et al. [71] considered session sequences
as graph structured data and used graph neural networks (GNN) to
capture complex transitions of items. Recently, self-attention mech-
anism [61] has been widely employed in recommender systems[32].
For instance, Wu et al. [69] proposed a Contextualized Temporal
Attention Mechanism to weigh historical actions’ influence on not
only what action it is, but also when and how the action took place.

However, previous work does not consider the influence of future
information when modeling user behaviors in history sequences.
In this work, we constructed a user-item heterogeneous graph to
capture future interactions of each user with items.

3 METHODOLOGY
In this section, we first formulate the micro-video recommendation
problem, and then introduce the proposed framework in detail. As
illustrated in Figure 1, our proposed DMR framework for dynamic
micro-video recommendation mainly comprises of three modules:1)
Pearson Correlation Coefficient enhanced implicit user network
module; 2) A history-future multi-trend joint routing module; 3) A
multi-level time-aware attention module.

3.1 Problem Formulation
In a typical micro-video recommendation scenario, we have a
set of users and a set of micro-videos, which can be denoted as
𝑈 = {𝑢1, 𝑢2, 𝑢3, ..., 𝑢 |𝑈 |} and𝑉 = {𝑣1, 𝑣2, 𝑣3, ..., 𝑣 |𝑉 |} respectively. Let
𝐼𝑢 = {𝑥𝑢1 , 𝑥

𝑢
2 , ..., 𝐼

𝑢
|𝐼𝑢 |} represent the sequence of interacted micro-

videos 𝑥 ∈ 𝐼𝑢 of user𝑢 ∈ 𝑈 , which is sorted in a chronological order
according to the timestamp of each interaction, and 𝑥𝑢𝑡 denote the
micro-video that the user 𝑢 has interacted with at timestamp 𝑡 .
The interaction sequence 𝐼𝑢 is split into 𝐼+ and 𝐼− which repre-
sent the micro-videos clicked by the user and the ones not clicked
respectively. Given the user’s historical micro-video interaction be-
haviors, the investigated goal of the micro-video recommendation
task in this paper is to predict the probability that the new candidate
micro-video will be clicked by user 𝑢. Notations are summarized in
Table 1.

Specifically, each instance is represented by a tuple (𝐼𝑢 , 𝐴𝑖 ),
where 𝐼𝑢 denotes the set of items interacted by user 𝑢, 𝐴𝑖 the fea-
tures of target item 𝑖 including the information of interaction times-
tamp and micro-video embeddings. Through implicit user network
module, we extract relative future sequence of user 𝑢 based on 𝐼𝑢
and their similar users’ historical interaction 𝐼𝑢′, 𝑢 ′ ∈ 𝑈 . The detail
will be illustrated in Section 3.3.

Table 1: Notations.

Notation Description

u a user
v a micro-video
x an interaction
d the dimension of user/micro-video embeddings
t the number of trends
U the set of users
V the set of micro-videos
I the set of interactions
T the trends set

To model diverse user preferences dynamically, DMR learns a
function 𝑓 for mapping history trend set 𝑇ℎ𝑢 and future trend set
𝑇
𝑓
𝑢 into user representations, which can be formulated as:

−→𝑒𝑢 = 𝑓 (𝑇ℎ𝑢 ,𝑇
𝑓
𝑢 ) (1)

where −→𝑒𝑢 ∈ R𝑑×1 denotes the representation vector of user 𝑢, 𝑑 the
dimension. Besides, the representation vector of target micro-video
𝑖 is obtained by an embedding function 𝑔 as:

−→𝑒𝑖 = 𝑔(𝐴𝑖 ) (2)

where −→𝑒𝑖 ∈ R𝑑×1 denotes the representation vector of target micro-
video 𝑖 .

Based on the learned user representation vector and micro-video
representation vector, the probability of candidate micro-video is
calculated using the likelihood function 𝑃 as:

𝑝 (𝑖 |𝑈 ,𝑉 ,𝑋 ) = 𝑃 (−→𝑒𝑢 ,−→𝑒𝑖 ) (3)

where −→𝑒𝑖 is the embedding of target item 𝑖 from set of micro-videos
𝑉 . Our framework outputs the click probabilities of the candidate
micro-video to rank the personalized recommendation list. Then
the system provide precise and diversified recommendation for each
user, which entails potential preference of the specific user as they
are most likely to interact with the recommended micro-videos.

The objective function for training our model is described in
Section 3.6 We use the Adam optimizer to train our method.

3.2 Overview
The overall structure of our proposed framework DMR is illustrated
in Figure 1, which is composed of an implicit user network module,
a multi-trend routing module, a multi-level time-aware attention
module and a prediction layer. As the relative future sequence for
current user is actually the history sequence for the neighbors,
the multi-trend routing algorithm is applied on both the future
and history sequences using shared parameters in parallel. The
framework takes the user historical interactions set 𝑋 as input. We
use 𝑋𝑢1,𝑁−𝐾 and 𝑋𝑢

𝑁−𝐾+1,𝑁 to represent training and testing data
of interactions sequence of user 𝑢 respectively. 𝑁 and 𝐾 denotes
the selected total length of interaction sequence of each user 𝑢 and
the length of training sequence respectively. For micro-videos from
the set of 𝑋𝑢1,𝑁−𝐾 , embeddings are presented as −→𝑒 𝑋𝑢1,𝑁−𝐾 .
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Figure 1: Network Architecture of DMR. DMR is composed of an implicit user networkmodule, a multi-trend routing module,
a multi-level time attention layer and a prediction layer. Based on the users’ historical interactions, we build a implicit user
network to construct future sequences. Themulti-trendmodule are applied on the current user’s history sequences and future
sequences in parallel to get representation of each trend group. The multi-level time attention mechanism are applied before
the pooling layer to generate the history trend representation and future trend representation, which is further concatenated
as dynamic user preference representation. Finally, the user representation and the candidate micro-video embedding are
utilized for prediction in the classifier.

The implicit user network module constructs neighbors set for
each user by selecting the users that have similar micro-video pref-
erence as indicated in their past behaviors, and then extract the
relative future sequences from each neighbor. The query items can
be selected from the user historical interaction 𝐼𝑢 , for simplicity,
we solely choose the last one in the list, which can be both efficient
and effective as demonstrated in the empirical analysis. The rela-
tive future behaviors are defined as the interacted items following
the query item in the chronological order, aiming at representing
dynamic preference of the user. The intuition in behind is that the
user tend to have similar preference trend as users with similar his-
torical behaviors, and that the user can have diverse and dynamic
trends of preferences.

The multi-trend routing module is developed to obtain the neigh-
bor centroids according to diverse motivation behind specific inter-
actions with the micro-videos. Then we learn future-aware diverse
trends based on history and future sequence jointly. Furthermore,
the future sequence evolved user representation acquired by time-
aware attention layer is concatenated with the historical behavior

evolved user representation to generate the dynamic user prefer-
ence representation vector. Finally we compute the user’s prefer-
ences over different micro-videos from the pool by the prediction
decoder. Each part will be elaborated in the following sections.

3.3 Implicit User Network
As shown in Figure 2 ,the implicit user network is constructed based
on user-item heterogeneous graph, which contains both the user
nodes and item nodes. An edge in the graph represents the interac-
tion between the user and the item. The weight of the edge indicates
the temporal weight of each interacted item in a chronological or-
der. The query items are selected in a multi-hop manner. The user
nodes connected to the selected query items are considered as the
candidate neighbor nodes of the current user.

Inspired by some works [19, 20], which extract social relation-
ships in absence of explicit social networks [45] , we construct the
user network from user-item correlation implicitly.

Specifically, we compare the similarity among users via collabo-
rative filtering implicitly based on the historical interactions with
micro-videos. As the Pearson Correlation Coefficient(PCC) is a
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Figure 2: Architecture of the implicit user network module. The leftmost part stands for the neighbor candidate selection
process based on user-item graph with the interactions by edge, user and micro-videos by node. User behaviors of the selected
neighbors are then split into train and test set to compare their similarity to the current user. The relative future sequence of
the most similar users are utilized to generate the future sequence as the input of multi-trend routing module, which output
the future trend representation.

Algorithm 1 Implicit User Network Construction
Input:

The set of users𝑈 ;
User’s historical interaction sequence 𝐼𝑢 ;
User’s query items sequence 𝐾𝑢 and upper bound k;
User’s candidate neighbors 𝐺𝑢 and upper bound g;
Similarity threshold 𝜏 for neighbor selection;

Output:
The extracted neighbor set of user 𝑁𝑢 , 𝑢 ∈ 𝑈 ;

1: for each 𝑢 ∈ 𝑈 do
2: 𝑁𝑢 ← ∅
3: for each 𝑖 ∈ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 (𝐼𝑢 ) do
4: if |𝐾𝑢 | < 𝑘 then
5: 𝐾𝑢 ← 𝐼𝑁𝑆𝐸𝑅𝑇 (𝑖)
6: end if
7: end for
8: end for
9: for each 𝑢 ∈ 𝑈 do
10: for each 𝑛 ∈ 𝑈 do
11: 𝑠𝑢𝑛 = 𝑈𝑆𝐸𝑅_𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌 (𝑢, 𝑛)
12: if 𝑛 ≠ 𝑢 ∧ |𝐺𝑢 | < 𝑔 ∧ 𝑠𝑢𝑛 > 𝜏 then
13: |𝐺𝑢 | ← 𝐼𝑁𝑆𝐸𝑅𝑇 (𝑛)
14: end if
15: end for
16: 𝑁𝑢 ← 𝑇𝑂𝑃_𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌 (𝐺𝑢 );
17: end for
18: return 𝑁𝑢

widely used similarity measure, we adopt Pearson Correlation Co-
efficient [4] to compute a linear correlation between the user and
each candidate neighbor as:

𝑠𝑖 𝑗 =

∑
𝑘∈𝐼 (𝑖)∩𝐼 ( 𝑗)

(𝑟𝑖𝑘 − 𝑟 𝑖 ) · (𝑟 𝑗𝑘 − 𝑟 𝑗 )√︂ ∑
𝑘∈𝐼 (𝑖)∩𝐼 ( 𝑗)

(𝑟𝑖𝑘 − 𝑟 𝑖 )2 ·
√︂ ∑
𝑘∈𝐼 (𝑖)∩𝐼 ( 𝑗)

(𝑟 𝑗𝑘 − 𝑟 𝑗 )2
(4)

where 𝐼 (𝑖) is a set of micro-videos user 𝑖 interacted with, 𝑟𝑖𝑘 and
𝑟 𝑖 represents the level (click or not click) of interaction of user 𝑖
over micro-video 𝑘 and the average level of action of user 𝑖 . The
user similarity 𝑠𝑖 is ranging from [−1, 1], and the similarity between
users 𝑖 and 𝑗 is proportional to the value according to this definition.
Following [43], we employ a mapping function 𝑓 (𝑥) = (𝑥 + 1)/2 to
bound the range of PCC similarities into [0, 1].

In the case of users with only one commonmicro-video in history,
PCC similarity gets 1 when the users’ preferences over the com-
mon micro-video are similar and −1 when not, which encourages
diversity of neighbors while damaging the fairness of similarity
calculation. To tackle this issue, we only kept less than 20% of such
neighbor nodes to seek the balance.

In addition to the PCCmethod, we also design a filter with simple
schema to extract similar users. For each user, if the historical
interactions 𝐼𝑢 is split into two pieces, 𝐼𝑢1:𝑡1 for training data, and
𝐼𝑢𝑡1:𝑡2 for testing data, the item 𝐼𝑢

𝑘
is defined as the last𝑘 micro-videos,

𝑘 could be any value less than or equal to |𝐼𝑢 |, while in practice
𝑘 = 1 can achieve good enough performance with simplicity. We
extracted a list of neighbors 𝑁 = {𝑛1, 𝑛2, ..., 𝑛 |𝑁 |} according to the
query item. The detail of this process is described in Algorithm 1.
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Furthermore, we constructed the future sequence of user 𝑢 as:

𝐹𝑢 = {𝑛𝑓 , 𝑛𝑓 ∈ 𝐼𝑛,𝑇 𝐼 (𝑛𝑓 ) ≥ 𝑇 𝐼 (𝐼𝑢|𝐼𝑢 |−𝑘 )} (5)

where Timestamp is denoted as 𝑇 𝐼 and the query item is denoted
as 𝐼 |𝐼𝑢 |−𝑘 . 𝐼𝑛 represents the interaction set of neighbor 𝑛

3.4 Multi-trend Routing
To capture the trend information lies in both history sequence and
future sequence, we devised a multi-trend routing module into a
two-stage manner to generate trend represent parallelly. Specifi-
cally, we group each micro-video from both the user’s historical
sequence and extracted relative future sequence into diverse trends
in the first stage. The micro-videos that are grouped into the same
trend are considered to be similar according to users’ interactions
over them and their own basic features. In the second stage, the
micro-videos from historical sequence and relative future sequence
are utilized to generate the representation of history and future
trend group in parallel.

Based on the positive historical interaction sequence 𝐼+ of user
𝑢, we represent each micro-video 𝑥 in 𝐼+ as an embedding vector
−→𝑥 ∈ R𝑑 , where 𝑑 is the embedding size. And we initialize positive
history trend group as 𝑇ℎ𝑢 ∈ R𝑠×𝑑 for user 𝑢, where 𝑠 denotes the
number of trend groups indicated from historical sequence and 𝑑
denotes the embedding dimension of each history trend. Specifically,
each trend embedding is represented as −→𝑡 ∈ R𝑑 .

Similarly, based on the extracted future sequence 𝐹+ from the
implicit user network. The positive future trend group is denoted
as 𝑇 𝑓𝑢 ∈ R𝑠×𝑑 for user 𝑢, where 𝑠 denotes the number of trend
groups indicated from future sequence and𝑑 denotes the embedding
dimension of each future trend.

In order to fine-tune the representation of each trend, we apply
attention mechanism over each micro-video and the initialized
trend group. Given the micro-video embedding −→𝑥 ∈ R𝑑 and the
trend embedding −→𝑡 ∈ R𝑑 , we calculate the weight between the
micro-video and the trend based on a co-attention memory matrix.
The micro-video from the history sequence and the future sequence
are put into history trend and future trend separately. As the history
sequence and future sequence is processed separately, our module
is capable of capturing timeliness of trends which indicates evolved
user interest.

3.5 Multi-level Time Attention Mechanism
As for the item-level, we use the weighted sum of historical micro-
video features to obtain the current micro-video representation.
Finally, we get the representation of each trend by attention mecha-
nism on each micro-video in the trend group. As for the trend-level,
we utilize the time-aware attention to activate the weight of di-
verse trends to capture the timeliness of each trend. Specifically,
the attention function takes the interaction time of item 𝑖 , the inter-
action time of trends and trend embeddings as the query, key and
value respectively. We compute the final representation of trend
representation future sequence of user 𝑢 as:

𝐻𝐹𝑢 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(−→𝑇 𝐼𝑖 ,
−−→
𝑇 𝐼𝑡𝑟 ,

−→
𝑡𝑢 ) = −→𝑡𝑢𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑝𝑜𝑤 (

−→
𝑇 𝐼𝑖 ,
−−→
𝑇 𝐼𝑡𝑟 )) (6)

where Attention denotes the attention function, 𝑇 𝐼𝑖 represents
the interaction time of micro-video 𝑖 , 𝑇 𝐼𝑡𝑟 represents the average

interaction time of micro-videos related to the trend group, −→𝑡𝑢
represents the embedding of the specific trend group.

The trend group generated from the user’s historical sequence
and future sequence are then eventually updated by adding the
corresponding trend group in 𝑇ℎ𝑢 and 𝑇 𝑓𝑢 with the aggregation of
history trend and future trend representation respectively.

3.6 Prediction
After computing the trend embeddings from activated trends through
time-aware attention layer, we apply sumpooling to both history
and future trend representations.

𝑒ℎ𝑢 = 𝑠𝑢𝑚𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑇ℎ1𝑢 , ...,𝑇
ℎ𝑠
𝑢 ), 𝑒

𝑓
𝑢 = 𝑠𝑢𝑚𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑇 𝑓1𝑢 , ...,𝑇

𝑓𝑠
𝑢 ) (7)

And then we concatenate the history trend representation vec-
tor 𝑒ℎ𝑢 and future trend representation vector 𝑒 𝑓𝑢 to form a user
preference embedding −→𝑒𝑢 as:

−→𝑒𝑢 = 𝑒ℎ𝑢 ⌢ 𝑒
𝑓
𝑢 (8)

Given a training sample 𝑢, 𝑖 with the user preference embedding
−→𝑒𝑢 and micro-video embedding −→𝑒𝑖 as well as the micro-video set
𝑉 , we can predict the possibility of the user interacting with the
micro-video as

𝑝 (𝑖 |𝑈 ,𝑉 , 𝐼 ) = 𝑒𝑥𝑝 (−→𝑒𝑢𝑇−→𝑒𝑖 )∑
𝑣∈𝑉 𝑒𝑥𝑝 (−→𝑒𝑢𝑇−→𝑒𝑣 )

(9)

In the sameway, we calculate the prediction score 𝑃 (𝑥 |𝐻−) based
on the negative interaction sequence, which aims to maximize
the distance between the new micro-video embedding and user’s
negative trend embeddings.

The final recommendation probability 𝑝𝑖 𝑗 is represented by the
linear combination of 𝑝 (𝑥 |𝐻+) and 𝑝 (𝑥 |𝐻−). And the objective
function of our model is as follows:

L = −
∑︁
𝑖∈U

©«
∑︁
𝑖∈𝐻+

log𝜎 (𝑝𝑢𝑖 ) +
∑︁
𝑖∈𝐻−

𝑙𝑜𝑔(1 − 𝜎 (𝑝𝑢𝑖 ))
ª®¬ (10)

where 𝑝𝑢𝑖 denotes the prediction score of micro-video 𝑖 for user 𝑢,
𝜎 represents the sigmoid activation function.

4 EXPERIMENTS
4.1 Dataset
MicroVideo-1.7M and KuaiShou were used as micro-video bench-
mark datasets in our experiments. Micro-video data and user-video
interaction information can be found in each of these datasets. Each
micro-video is represented by its features in these two datasets,
and each interaction record includes the userID, micro-video ID,
visited timestamp, and whether the user clicked the video. The two
datasets’ statistics are shown in Table 2.
• MicroVideo-1.7M[8]: This dataset comes from real data of
micro-video sharing service in China which contains 1.7
million micro-videos.
• KuaiShou: This dataset is released by the Kuaishou Compe-
tition in China MM 2018 conference.
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Table 2: Statistics of the Datasets.

Dataset users items interactions train test

MicroVideo-1.7M 10,986 1,704,880 12,737,619 8,970,310 3,767,309
KuaiShou 10,000 3,239,534 13,661,383 10,931,092 2,730,291

4.2 Implementation Details
We used TensorFlow on four Tesla P40 GPUs to train our model
with Adam optimizer. The following are the hyper-parameters: The
micro-video embedding is 512-dimensional vectors, while the user
embedding is 128-dimensional vectors. The batch size was set to
32, the optimizer was Adam, the learning rate was set to 0.001, and
the regularization factor was set to 0.0001.

To find the user’s similar neighbors, we used the Pearson Correla-
tion Coefficient (PCC) described earlier. In the ablation analysis, we
set neighbor numbers as 5, 20, and 50. As for the future sequences,
we cut off each neighbor’s at most 100 interacted micro-videos after
the current user’s query items.

4.3 Evaluation Metrics
To compare the performance of different models,we use Preci-
sion@N,Recall@N, F1-score@N andAUC, where N is set to 50
as metrics for evaluation.
• Precision: Number of correctly predicted positive obser-
vations divided by the total number of predicted positive
observations.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑁 =
1
|𝑈 |

∑︁
𝑢∈𝑈

|𝐼𝑢,𝑁 ∩ 𝐼𝑟 |
|𝐼𝑟 |

(11)

where 𝐼𝑢,𝑁 denotes the set of top-N recommended micro-
videos for user u and 𝐼𝑟 is the total recommendation list for
user u.
• Recall: Number of corrected recommended micro-videos di-
vided by the total number of all recommended micro-videos.

𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 =
1
|𝑈 |

∑︁
𝑢∈𝑈

|𝐼𝑢,𝑁 ∩ 𝐼𝑢 |
|𝐼𝑢 |

(12)

where 𝐼𝑢,𝑁 denotes the set of top-N recommended micro-
videos for user u and 𝐼𝑢 is the set of testing micro-videos for
user u.
• F1-score: F1 Score is the weighted average of Precision and
Recall. It’s used to balance between Presicion and Recall.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (13)

• AUC: AUC (Area Under the ROC Curve) is used in classifica-
tion analysis to determine the quality of classifiers.

4.4 Competitors
To validate the effectiveness of our proposed DMR framework,
we conducted experiments on two publicly available real-world
datasets. The comparision to other state-of-the-art micro-video
recommenders are summarized in Table 3.

• BPR[51]: Trained on pairwise items, the Bayesian personal-
ized ranking(BPR) maximize the difference between positive
and negative items of each user in Bayesian approach.
• LSTM[75]: Long short-term memory(LSTM) is a sequence
model. Hidden states of each unit are aggregated to form
user interest representation.
• CNN: The convolutional neural network (CNN) can be utilized
to generate user interest representations based on the inter-
action sequence. The max pooling layer and MLP layers are
used for user interest extraction and prediction.
• NCF[26]: As a collaborative filtering based model, NCF learns
user embedding and item embedding with a shallow net-
work and a deep network, which is able to learn an arbitrary
function from data.
• ATRank[76]: ATRank is an attention-based behavior model-
ing framework, which can model with heterogeneous user
behaviors using only the attention model. It utilizes self-
attention in multiple semantic spaces to capture behaviors
interactions. The model is capable of predicting all types of
user actions in a multi-task manner, which shows effective-
ness over the highly optimized individual models.
• THACIL[8]: THACIL achieved the click-through prediction
for micro-videos by modeling user’s historical behaviors.
The proposed recommendation algorithm characterizes both
short-term and long-term correlation within user behaviors.
It also profiles user interests at both coarse and fine granu-
larities.
• ALPINE[40]: To intelligently route micro videos to target
users, ALPINE proposed an LSTM model based on a tempo-
ral graph, which is encoded by user’s historical interaction
sequence. The model captures the complex and diverse inter-
ests of users via a multi-level interest modeling layer. More-
over, the model achieves better performance by utilizing true
negative samles, which indicates uninterested information.
• MTIN[31]: This model is a multi-scale time-aware user inter-
est modeling framework, which learns user interests from
fine-grained interest groups. MTIN incorporates the interest
group routing unit to generate user interest groups based on
the interaction sequence and leverages fine-grained interest
groups via item-level and group-level interest extraction unit.
The distilled user interest representation is used to predict
the click probabilities of micro-video candidates.

4.5 Results
The model performance on the two datasets is summarized in Ta-
ble 3. We run experiments to dissect the effectiveness of our rec-
ommendation model. We compare the performance of DMR with
several commonly used and state-of-the-art models: BPR, LSTM,
CNN, NCF, ATRank, THACIL, ALPINE and MTIN. All these models
are running on the two datasets introduced above: MicroVideo-
1.7M and KuaiShou-Dataset. According to the results shown in
Table 3, our model DMR achieve better performance on precision
over KuaiShou dataset and performs better in terms of AUC, Recall
and F1-score over MicroVideo-1.7M dataset.

Table 4 compares the result of different neighbor number setting
of 5, 20 and 50. Considering more neighbors could result in more
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Table 3: Overall Performance Comparision. The model performance of our model and several state-of-the-art baselines on
two public datasets: MicroVideo-1.7M and KuaiShou-Dataset. The best results are highlighted in bold.

MicroVideo-1.7M KuaiShou-Dataset

Model AUC@50 Precision@50 Recall@50 F1-score@50 AUC@50 Precision@50 Recall@50 F1-score@50

BPR 0.583 0.241 0.181 0.206 0.595 0.290 0.387 0.331
LSTM 0.641 0.277 0.205 0.236 0.731 0.316 0.420 0.360
CNN 0.650 0.287 0.214 0.245 0.719 0.312 0.413 0.356
NCF 0.672 0.316 0.225 0.262 0.724 0.320 0.420 0.364
ATRank 0.660 0.297 0.221 0.253 0.722 0.322 0.426 0.367
THACIL 0.684 0.324 0.234 0.269 0.727 0.325 0.429 0.369
ALPINE 0.713 0.300 0.460 0.362 0.739 0.331 0.436 0.376
MTIN 0.729 0.317 0.476 0.381 0.752 0.341 0.449 0.388

DMR 0.731 0.323 0.478 0.385 0.742 0.343 0.442 0.386

Table 4: Effect analysis of Neighbors. The model performance with different Neighbor Number setting on two datasets:
MicroVideo-1.7M and KuaiShou-Dataset. The metrics are @50. Here we set Neighbor Number to 5, 20, 50.

MicroVideo-1.7M KuaiShou-Dataset

Model AUC@50 Precision@50 Recall@50 F1-score@50 AUC@50 Precision@50 Recall@50 F1-score@50

DMR-N5 0.689 0.319 0.425 0.364 0.674 0.333 0.439 0.378
DMR-N20 0.731 0.323 0.478 0.385 0.742 0.343 0.442 0.386
DMR-N50 0.668 0.280 0.282 0.281 0.652 0.329 0.404 0.362

diversity, but too many neighbors would dilute interest trends’
embedding. Ourmodel achieves improvements on neighbor number
equals 20 over 5. Besides, it shows reduction if setting neighbor
number from 20 to 50. This means the number of neighbors also
play a crucial part in model performance.

The computational complexity of sequence layer modeling user
and neighbors is𝑂 (𝑘𝑛𝑑2), where 𝑘 denotes the number of extracted
neighbors, 𝑛 denotes the average sequence length and 𝑑 denotes the
dimension of item’s representation. Capsule layer’s computational
complexity depends on kernel size and number of trends. Average
time complexity of capsule layer scales 𝑂 (𝑛𝑇𝑟2), where 𝑟 denotes
kernel size of capsule layer and𝑇 denotes the number of trends. For
large-scale applications, our proposed model could reduce compu-
tational complexity by two measures: (1)encode neighbors with a
momentum encoder[21].(2)adopt a light-weight Capsule network.

4.6 Recommendation Diversity
Aside from achieving high recommendation accuracy, diversity
is also essential for the user experience. With little information
of historical interactions between the users and the micro-videos,
recommendation systems learned to assist users in selecting micro-
videos that would be of interest to them. Recommender systems
keep track of how users interacted with the micro-videos they’ve
chosen.

Many research works [1, 3, 14, 49] have been undertaken to
propose novel diversification algorithms. Our proposed module

can learn the diverse trends of user preference and provide rec-
ommendation with diversity. We define the individual diversity as
below:

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦@𝑁 =

∑𝑁
𝑗=1

∑𝑁
𝑘=𝑗+1 𝛿 (𝐶𝐴𝑇𝐸 (𝑖𝑢,𝑗 ) ≠ 𝐶𝐴𝑇𝐸 (𝑖𝑢,𝑘 ))

𝑁 × (𝑁 − 1)/2 (14)

where 𝐶𝐴𝑇𝐸 represents the category of the item. 𝑖𝑢 denotes item
recommended for user 𝑢, 𝑗 and 𝑘 represents the order of the rec-
ommended items. 𝛿 (·) is an indicator function.

Table 5 presents comparisons with THACIL and MTIN over the
recommendation diversity metric on Micro-video dataset, which
provides category infromation of micro-videos. We adopt the set-
ting of six historical trend and six future trend evolved from 5
neighbors for our model. From the table, our module DMR achieve
the optimum diversity metric indicating the recommendation it
provide can effectively take neighbors’ interests into account.

5 CONCLUSION AND FUTUREWORK
In this work, we propose to capture even more diverse and dynamic
interests beyond those implied by the historical behaviors for micro-
video recommendation. We refer to the future interest directions
as trends and devise the DMR framework. DMR employ an implicit
user network module to extract future sequence fragments from
similar users. A mutli-trend routing module assigns these future
sequences to different trend groups and updates the corresponding
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Table 5: Model Recommendation Diversity Comparision on
Micro-video Dataset.

MicroVideo-1.7M THACIL MTIN DMR

Diversity@10 1.9112 1.9940 1.9948
Diversity@50 1.9104 1.9948 1.9956
Diversity@100 1.9436 1.9950 1.9954

trending memory slot in a dynamic read-write manner. Final pre-
dictions are made based on both future evolved trends and history
evolved trends with a history-future trends joint prediction module.

This work represents one of the initial attempts to explicitly cap-
ture possible interest trends for a given historical behavior sequence,
especially for ranking models and micro-video recommendation.
We believe that such an idea can be inspirational to future works
on learning recommender systems of high diversity. In the future,
though the implicit user networkmodule does not affect serving effi-
ciency, wewould like to explorewhethermore efficient and effective
solutions exist to boost the training since introducing information
from other users might also introduce inevitable noises. Moreover,
we plan to extend the multi-trend capturing idea to more appli-
cations in recommender systems and address application-specific
challenges.
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